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Regularized Tree Partitioning and Its Application to

Unsupervised Image Segmentation
Jingdong Wang, Huaizu Jiang, Yangqing Jia, Xian-Sheng Hua, Changshui Zhang, and Long Quan

Abstract—In this paper, we propose regularized tree partition-
ing approaches. We study normalized cut (NCut) and average cut
(ACut) criteria over a tree, forming two approaches: normalized
tree partitioning (NTP) and average tree partitioning (ATP). We
give the properties that result in an efficient algorithm for NTP
and ATP. Moreover, we present the relations between the solu-
tions of NTP and ATP over the maximum weight spanning tree of
a graph and NCut and ACut over this graph. To demonstrate the
effectiveness of the proposed approaches, we show its application
to image segmentation over the Berkeley image segmentation
data set and present qualitative and quantitative comparisons
with state-of-the-art methods.

Index Terms—Grouping, image segmentation, graph partition-
ing, regularized tree partitioning

I. INTRODUCTION

Image segmentation is a fundamental but challenging prob-

lem in computer vision and image processing. It could be

defined as partitioning the set of pixels forming the image,

or clustering its pixels. Many computational vision problems,

such as object detection and recognition, stereo and motion

estimation, image search and so on, could in principle make

good use of segmented images. In this paper, we study

clustering approaches to image segmentation and focus on

graph-based solutions.

A. Related Work

In the past several years, there has been significant interest

in graph-based clustering approaches for unsupervised image

segmentation [12], [13], [14], [17], [19], [22], [32], [33], [34],

[36], [37], [40], [43], [44], [45], [48], [49]. These approaches

represent the image by a weighted graph, where each vertex

corresponds to an image pixel or a region and each edge is
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weighted with the similarity of the pixels or regions connected

by that edge. This graph is partitioned into components in a

way that minimizes some cost function of the edges within

those components and/or the boundary edges between those

components.

The pioneer work on graph-based image segmentation is

based on a cut criterion, minimum cut proposed by Wu and

Leahy [45], which aims to find a graph partitioning so that the

similarities over the edges connecting different components

(called boundary cut) are minimized. This criterion, however,

has a bias toward short boundaries and thus tends to find

small components. This bias is addressed with regularized cut,

e.g., ratio cut by Cox et al. [12], normalized cut by Shi and

Malik [33] and average cut by Soundararajan et al. [34]. Ratio

cut defines a weight within a component, and aims to minimize

the ratio between the boundary cut and the weight. Normalized

cut takes into account the self-similarities within components,

and leads to a cost function, with the summation of ratios

between boundary cuts across components and self-similarities

within components. Average cut alternatively considers the

pixel number within each component and results in a cost

function, sums of ratios between boundary cuts across com-

ponents and pixel numbers within components. Isoperimetric

cut by Grady and Schwartz [17] suggests to use a general

measure within components, called combinatorial volume, to

regularize the boundary cut.

It has been shown from theoretical and practical aspects

that the regularized cut criteria are superior over minimum

cut in clustering and segmentation. However, the regularized

cut criteria, including ratio cut, normalized cut, average cut,

and isoperimetric cut, all yield NP-hard computational prob-

lems. Although approximate methods for computing minimum

regularized cuts, e.g., spectral relaxation [17], [19], [33], [34]

and semi-definite relaxation [46], have been developed, for

the general cases the accuracy in these approximations is

not easily estimated. In practice, they are still fairly hard to

compute, limiting the methods to relatively small images or

requiring high computational cost.

Some other graph-based methods adopt local criteria and

conduct a bottom-up strategy to heuristically aggregate the

data points into more and more compact clusters. One of

the representative methods is presented in [14]. This method

incrementally unions two small clusters (initially a cluster

only consists of a single data point) into a bigger one, based

on the weights of the edges connecting the two clusters.

This method is computationally efficient, but may not get

satisfactory segmentation results due to the simple union

criterion and the local optimization strategy.
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Early approaches to image segmentation, region splitting

and merging [20], [21], and region growing [2], [7], [28], [38],

are very close to graph-based approaches. Shi and Malik [33]

present an iterative merging scheme and a global recursive

scheme to minimize the normalized cut for k-way cut. From

this point of view, region splitting and merging and region

growing essentially form the image into a graph and then

partition the graph with some local criteria in a greedy manner.

Zahn [49] presents a segmentation approach based on the

minimum cut criterion over the maximum weight spanning

tree of the image graph. The bipartition with the minimum

cut criterion can be easily achieved by cutting the edge with

the smallest weight since there is no loop in the tree. The

segmentation result, however, suffers from the shortcoming of

cutting small regions. This shortcoming is partially removed

by Urquhart [36], in which the weight of an edge is normalized

using the largest weight incident on the vertices touching that

edge.

Recently, image segmentation with a maximum weight

spanning tree representation has been also studied. Allene et.

al [3] analyze the links between spanning forest, minimum

cut and watershed and exhibit some particular cases, where

a strong relation exists between these structures. Couprie

et. al [10] instead present a power watershed framework, a

supervised algorithm, to connect graph-based segmentation

approaches including graph cuts, random walker, spanning

forests and so on. Najman [29] presents an alternative way

of thinking hierarchical segmentation [30] that completes

existing ones, e.g., ultrametric distances, minimum spanning

tree. Guigues et. al [18] present the image analysis based on

scaled sets for hierarchical segmentation. In contrast to the

prior works using the maximum weight spanning tree, this

paper proposes regularized tree partitioning approaches and

shows its application to unsupervised image segmentation by

using the maximum weight spanning tree approximating the

image graph.

Besides, there are supervised clustering and segmentation

approaches, such as graph-cuts [6], label propagation [41],

and semi-supervised learning algorithms [51]. We have also

proposed supervised tree partitioning approaches for image

segmentation [24], [39]. Those approaches require initial la-

beling over seeds from users and differ from the goal of this

paper that aims to do automatic clustering.

B. Our Approach

This paper mainly focuses on improving clustering algo-

rithms that are based on regularized graph partitioning [17],

[33], [34]. Regularized graph partitioning enjoys good clus-

tering criteria, but is computationally infeasible, which leads

to approximate solutions and thus deteriorated segmentation

quality. We propose regularized tree partitioning approaches,

which can efficiently optimize good clustering criteria and is

able to lead to superior performance.

We first present normalized tree partitioning (NTP) and

average tree partitioning (ATP) that optimize normalized cut

and average cut over a tree, and give the properties over a

tree that lead to an efficient optimization algorithm. Then,

we analyze the necessary condition on which NTP and ATP

over the MST of a graph achieve the exact bipartition over

the graph and the same bipartition to the optimal solution

of normalized cut and average cut over the graph. Next, we

present new partitioning criteria that also derive NTP and ATP

over a tree and give sufficient and necessary conditions on

which they can achieve the exact and optimal partition. Last,

we extend NTP and ATP and reach two approaches, maximum

normalized tree partitioning (MaxNTP) and maximum average

tree partitioning (MaxATP). We present efficient optimization

algorithms to NTP, ATP, MaxNTP, and MaxATP. Quantitative

and qualitative comparison results of image segmentation over

the Berkeley image data set demonstrate that regularized tree

partitioning achieves competitive results.

To summarize, this paper extends our previous work [40]

that first introduces the NTP algorithm, and provides at least

two contributions. On the one hand, we give a new interpreta-

tion to NTP, which helps understand NTP more deeply. On the

other hand, we present a regularized tree partitioning frame-

work and introduce several new tree partitioning algorithms,

including ATP, MaxNTP, MaxATP, and so on.

II. PRELIMINARIES

Graph-based grouping methods first represent a set of data

points in an arbitrary feature space as a weighted undirected

graph G = (V , E ,W), where a node v ∈ V in the graph

corresponds to a point in the feature space, an edge e ∈ E
is formed between a pair of nodes u and v, and the weight

w ∈ W on the edge e is a function of the similarity between

nodes u and v.

The widely-used graph representation of a set of data points

is a neighborhood graph, which is constructed by connecting

each point and its nearest neighbors. In general data points,

the nearest neighbors can be found as k-nearest neighbors

or ǫ-nearest neighbors according to some distance measures,

e.g., the Euclidean distance. The weight over the edge is set

based on the distance (or similarity) between the associated

data points. In the task of image segmentation, a graph for

an image is constructed differently. The edges are obtained by

connecting the spatially-neighboring pixels, e.g., 4-connected

neighbors. Then the weight over an edge is computed as the

similarity evaluated based on the appearance features of the

associated pixels, and sometimes their spatial distance is also

taken into consideration for the similarity evaluation.

Graph-based grouping methods aim to find the grouping,

to partition the set V into disjoint sets, {V1, V2, · · · , Vm},

by removing some edges so that such a partition satisfies

some criterion. In this paper, we assume that G is a con-

nected graph because partitioning a disconnected graph can be

done by partitioning each connected component (subgraph).

For convenience, we present the description of graph-based

grouping methods using the basic bipartitioning case that splits

the graph into two subgraphs. The multi-way partitioning case

can be discussed in the similar way. The two subsets in the

bipartitioning case are denoted by A and B. Here, V = A∪B,

A ∩ B = ∅, A 6= ∅, and B 6= ∅. We call the set of edges

between A and B the boundary of the two subsets.
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In this paper, we are interested in segmenting images using

a tree structure to represent an image and study the techniques

of partitioning the trees under new criteria. In implementation,

we use a maximum weight spanning tree to approximate an

image graph. A maximum spanning tree is a spanning tree of

a weighted graph having the maximum weight. We compute

it by applying the Kruskal’s algorithm.

Before introducing cut criteria, we first introduce several

basic terms.

Definition 1 (Cut and association). Given two disjoint sets A
and B, the cut between the two sets, Cut(A,B), evaluating the

inter-similarity, is defined as the summation of the similarities

over the boundary,

Cut(A,B) =
∑

u∈A,v∈B

w(u, v), (1)

where w(u, v) is the weight over the edge (u, v).
Given two sets A and V with A ⊆ V , the association of A

and V , Assoc(A,V), is defined as follows,

Assoc(A,V) =
∑

u∈A,v∈V

w(u, v). (2)

Definition 2 (Dominant cut). Given two disjoint sets A and B,

the dominant cut between the two sets, DCut(A,B), is defined

as the maximum one of the similarities over the boundary,

DCut(A,B) = max
u∈A,v∈B

w(u, v). (3)

A. Minimum Cut

The solution to clustering by minimizing the cut value over

the image graph was originally developed in [32], [45]. It has

been shown in [45] that the minimum cut criterion leads to a

grouping that favors cutting small sets of isolated nodes in the

graph.

Let’s consider an alternative criterion over a graph that

minimizes the dominant cut to partition the set V into two

disjoint nonempty subsets A∗ and B∗,

(A∗,B∗) = argmin
A,B

DCut(A,B), (4)

where A 6= ∅,B 6= ∅,A∪ B = V ,A∩ B = ∅.

We present a theorem, showing minimizing the dominant

cut can be reduced to minimizing the cut or dominant cut over

the maximum weight spanning tree (MST) of the graph, which

we call minimum tree partitioning (MTP). Without additional

explanation, all the theorems have the assumption that the MST

is unique and only one edge in the MST corresponds to the

smallest weight and the proofs are given in Appendix.

Theorem 1. The partitioning result of minimizing the dom-

inant cut over a graph is exactly equivalent to splitting the

MST T by removing the edge corresponding to the smallest

weight.

The following theorem shows a property about the minimum

(dominant) cut criterion over a tree.

Theorem 2. The minimum (dominant) cut criterion over a tree

leads to cutting only one edge and results in two connected

subtrees.

According to the above theorem, partitioning the MST with

the minimum cut criterion can be efficiently performed by

scanning each edge in the MST, which takes linear time cost.

Because of computational advantage, image segmentation by

partitioning the MST of an image graph was ever studied early

in [49]. Similar to the minimum cut over a graph [45], the

segmentation result has a bias to cutting small regions.

B. Regularized Cut

To deal with the problem in the minimum cut criterion,

various regularized cut criteria are designed by considering

the characteristics within each subset. We present a summary

of two representative criteria, normalized cut and average cut.

Normalized cut. The normalized cut criterion [33] takes into

account the similarities between the points of each subset and

the whole set, and penalizes partitions with subsets of small

similarities. It is defined as follows,

NCut(A,B) =
Cut(A,B)

Assoc(A,V)
+

Cut(A,B)

Assoc(B,V)
. (5)

The normalized cut criterion can be interpreted from the

isoperimetric perspective [17]. A slightly-modified normal-

ized cut criterion [13] instead replaces Assoc(A,V) and

Assoc(B,V) using Assoc(A,A) and Assoc(B,B).

Average cut. The average cut criterion [34] regularizes the cut

value using the size of each subset and penalizes partitions

with subsets of small sizes. It is defined as the following,

ACut(A,B) =
Cut(A,B)

|A|
+

Cut(A,B)

|B|
, (6)

where | · | is the cardinality of a subset, i.e., the number of

points in the subset. Similarly, the ratio cut criterion [44] also

considers the cardinalities of the two subsets, and is defined

as follows,

RCut(A,B) =
Cut(A,B)

|A||B|
. (7)

It can be easily shown that the average cut criterion and the

ratio cut criterion are equivalent.

Spectral relaxation. The problems of minimizing normalized

cut and average cut are NP-hard. The typical solution is to

adopt spectral relaxation and transform the optimization prob-

lem to an eigenvalue decomposition problem. The regularized

cut criteria to image segmentation are shown theoretically to

be capable of achieving good performance [34]. Although

some special cases when an exact partition is achieved are

analyzed [27], the solution using spectral relaxation generally

is not easily analyzed due to the continuous relaxation forming

an eigen-decomposition problem and the discretization stage

computing the grouping result from the eigenvectors.

There are some other algorithms to optimize the normalized

cut and average cut, e.g., through network flow [19] and semi-

definite programming [46].
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(a) (b)

Fig. 1. (a) illustrates the super tree. Each node corresponds to a connected
subtree, called super node. (b) gives an example that might form the three
super nodes indicated in the gray area in (a): The top four connected blue
nodes in (b) form the blue super node, the left two connected red nodes form
the left red super node, and the other three connected red nodes form the right
red super node.

III. REGULARIZED TREE PARTITIONING

Let T = (V , E ,W) be a tree. A partition over it is

defined as separating the nodes V into disjoint nonempty sets,

{V1, · · · ,Vk}. For clarification, we present discussions mainly

on the bipartition case. The two disjoint sets are denoted as A
and B, A∪B = V , A∩B = ∅. In the following, we may use

a subset (e.g., Vi) of connected nodes to represent a subtree

as in a tree a subset of connected nodes uniquely determines

a subtree.

A. Normalized Tree Partitioning

Normalized tree partitioning (NTP) is a method of par-

titioning the nodes of a tree based on the normalized cut

criterion. We present a property of minimizing normalized cut

over a tree, which leads to an efficient optimization algorithm.

Then we give a necessary condition on which minimizing

normalized cut over the maximum weight spanning tree of

a graph leads to the exact partition over the graph and the

partition corresponding to the optimal solution of minimizing

normalized cut over the graph. Last, we show another way to

derive NTP.

1) Properties: We first present and prove Theorem 3. Based

on it, we can design an efficient algorithm to find the optimal

normalized partitioning over a tree by checking the edges

in the tree one by one. We will present the algorithm in

Section IV.

Theorem 3. On a tree, the global minimum for the normalized

cut criterion must correspond to two subsets: A and B, and

each one forms a connected tree.

In practical applications, e.g., image segmentation in this

paper, we propose to find a maximum weight spanning tree

to approximate the graph, and then partition the tree to group

the points. To achieve a better understanding of the proposed

NTP solution to image segmentation, we analyze the necessary

condition on which NTP over the MST gets the exact partition

or gets the same solution to that of minimizing normalized cut

over the graph, given in Theorem 4. To make the analysis clear,

we assume that the MST is unique and the optimum of every

partitioning criterion over the graph (and the MST) is unique

without special explanation.

Theorem 4. Suppose (A∗,B∗) corresponds to the exact par-

tition of the graph G or the optimal partition of minimizing

normalized cut over G. If normalized tree partitioning over the

MST of the graph also yields (A∗,B∗), then among the edges

across (A∗,B∗), only the light edge, the edge whose weight

is the maximum of any edge across (A∗,B∗), is contained in

the MST.

2) Interpretation: Let’s introduce another similarity over a

set V , to measure the degree that the points in the set are

aggregated into a single group.

Definition 3 (Aggregation). For a set V the aggregation is

defined as follows,

Aggre(V)

= max
S⊂V,S6=∅,S6=V

[2 DCut(S, S̄) + Aggre(S) + Aggre(S̄)],

(8)

where S is a non-empty proper subset of V , and S̄ is the

complement of S with respect to V .

Using the mathematically inductive reasoning, the aggre-

gation can be shown to be equal to the sum of the weights

of the MST of the graph corresponding to V . Consider the

partitioning criterion regularized by the Aggregation measure,

called normalized dominant cut,

NDCut(A,B)

=
DCut(A,B)

Aggre(A) + DCut(A,B)
+

DCut(A,B)

Aggre(B) + DCut(A,B)
.

(9)

We present the following lemma and theorem to show the

relations between normalized dominant cut and normalized

cut.

Lemma 1. Over a tree, the solution to the normalized domi-

nant cut criterion is exactly equivalent to the solution of NTP,

i.e., the normalized cut criterion.

Theorem 5. Suppose the solution to minimizing normalized

dominant cut over a graph leads to two subsets: A∗ and B∗,

the solution to NTP over the MST also results in A∗ and B∗

iff among the edges across (A∗,B∗), only the light edge is

contained in the MST.

B. Average Tree Partitioning

Different from normalized tree partitioning, average tree

partitioning (ATP) splits the tree so that the cut regularized

by the size of each subtree is minimized. Like NTP, ATP has

similar properties.

First, we present a theorem that suggests an efficient algo-

rithm to minimize average cut over a tree.

Theorem 6. On a tree, the global minimum for the average

cut (ratio cut) criterion must correspond to two subsets: A
and B, and each one forms a connected tree.

The following presents the relation between the solution of

ATP over the MST and the exact partition and the optimal

partition of minimizing average cut over the graph. The proof

is similar to that for Theorem 4.
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Theorem 7. Suppose A∗ and B∗ corresponds to the exact

partition of the graph G or the optimal partition of minimizing

average cut over G. If average tree partitioning over the MST

of the graph also yields (A∗,B∗), then among the edges across

(A∗,B∗), only the light edge is contained in the MST.

Similar to NTP, we have a new graph partitioning criterion,

average dominant cut.

ADCut(A,B) =
DCut(A,B)

|A|
+

DCut(A,B)

|B|
. (10)

According to this criterion, we can derive ATP over the MST

in another way, which is guaranteed by the below theorem.

Theorem 8. Suppose the solution to minimizing average

dominant cut over a graph leads to two subsets: A∗ and B∗,

the solution to ATP over the MST of the graph also results

in A∗ and B∗ iff among the edges across (A∗,B∗), only the

light edge is contained in the MST.

C. Extension

Normalized and average tree partitioning sum up the reg-

ularized cuts from two subsets together to get an overall

criterion. There might be a drawback that the larger regularized

cut is diluted by the smaller one, and thus the grouping

performance is deteriorated. To handle this issue, we propose

to use the larger one among the regularized cuts to evaluate

the quality of tree partitioning. This manner is similar to

Cheeger constant [8] and can also derive the criterion used

in isoperimetric graph partitioning [17].

The two criteria are formulated as follows,

MaxNCut(A,B) = max{
Cut(A,B)

Assoc(A,V)
,
Cut(A,B)

Assoc(B,V)
},

(11)

MaxACut(A,B) = max{
Cut(A,B)

|A|
,
Cut(A,B)

|B|
}. (12)

In the case that there are multiple partitions corresponding

to the same MaxNCut (or MaxACut) value, we remedy

this problem by selecting the partition that has the smallest

NCut (ACut) value. The two extensions are called maximum

normalized tree partitioning (MaxNTP) and maximum average

tree partitioning (MaxATP).

For MaxNTP and MaxATP, we have a property similar to

Theorems 3 and 6, and then can have an efficient algorithm

to find the solution.

Theorem 9. On a tree, the global optimum for maximum

normalized cut and maximum average cut must correspond

to two subsets: A and B, and each one forms a connected

tree.

The proof is given in the supplementary material.

Similar to NTP and ATP, we have also a property showing

the necessary condition that MaxNTP and MaxATP over the

MST achieves the exact partition over the graph or the same

partition to MaxNTP and MaxATP over the graph.

u

v

r

Fig. 2. A tree structure. Note that the tree we aim to partition may not be
necessarily a binary tree.

Theorem 10. Suppose A∗ and B∗ corresponds to the exact

partition of graph G or the optimal partition of minimiz-

ing maximum normalized (average) cut over G. If MaxNTP

(MaxATP) over the MST of the graph also yields (A∗,B∗),
then among the edges across (A∗,B∗), only the light edge is

contained in the MST.

We can also define the following two criteria,

MaxNDCut(A,B)

=max{
DCut(A,B)

Aggre(A) + DCut(A,B)
,

DCut(A,B)

Aggre(B) + DCut(A,B)
},

(13)

MaxADCut(A,B)

=max{
DCut(A,B)

|A|
,
DCut(A,B)

|B|
}. (14)

We can have the conclusion that the above criteria over a graph

can lead to maximum normalized and average cuts over the

MST, as described below.

Theorem 11. Suppose the solution to minimizing maximum

normalized (average) dominant cut over a graph leads to two

subsets A∗ and B∗, the solution to MaxNTP (MaxATP) over

the MST also results in A∗ and B∗ iff among the edges across

(A∗,B∗), only the light edge is contained in the MST.

IV. ALGORITHMS

This section describes the algorithms to the proposed four

tree partitioning schemes. We first present how to get the

optimal bipartition and then a recursive bipartition manner to

k-way partition.

A. Bipartition

Considering the tree in Figure 2, which is rooted from node

r and denoted as Tr, we can just remove edge (u, v), then

the tree is partitioned into two parts: one, denoted as Tv,

is rooted from node v, and the other one, denoted as Tr\v
and is called the complementary subtree of Tv , is still rooted

from the original root r but excludes Tv and edge (u, v). For

convenience, the removed edge (u, v) is used to represent such

a bipartition. The (connected) tree structure only consists of

n − 1 edges, where n is the number of the nodes. So it

only takes O(n) time to find the optimal edge to be split

by traversing all the edges, if the associations (sizes) and cuts

for all the possible partitions are pre-computed. The following

shows how to efficiently compute the cuts and the associations

(sizes).
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Cut computation. Because there is only one edge linking

two complementary subtrees, the cut for the corresponding

partition is just the weight of that edge. In Figure 2, the cut

value of the partition, Cut (Tr\v, Tv), is the similarity w(u, v)
of nodes u and v.

Association computation. A naive method is exhaustively cal-

culating the associations for all possible partitions separately.

This separate manner is computationally inefficient and and

its time complexity is O(n2) because there are O(n) possible

bipartitions and it takes O(n) time to calculate the association

for each bipartition.

To speed up association calculation, we propose a recursive

method by exhibiting the relations of the associations of

different partitions. Specifically, our approach is based on two

properties. The first is association complementarity. Let ar
be the association of Tr. From Figure 2, it is obvious that

ar\v = ar−av−2w(u, v), where ar\v = aTr\v
and ar = aTr

.

Hence, it is sufficient to calculate association values for all

subtrees Tv .

The second property is overlapping of association evalu-

ation between a subtree and its child trees. According to

the definition of the association, it can be easily derived

that the association of subtree Tv is equal to the summation

of the associations of the subtrees, rooted from v’s child

nodes, and double cut values between v and v’s child nodes.

Mathematically, this overlapping can be written as a recursive

formulation:

au =

{ ∑
v∈Cu

(av + 2w(u, v)) u an internal node

0 u a leaf node,
(15)

where Cu represents the set of u’s child nodes. By this

recursion, the associations of all the subtrees can be evaluated

in a bottom-up manner from the leaves to the root.

Size computation. Average cut needs to compute the size

of each subtree, the number of the nodes for each possible

partition. It can also be computed in a recursive way. Let

av in this case be the size of the subtree Tv. The recursive

formulation is written as follows,

au =

{
1 +

∑
v∈Cu

av u an internal node

1 u a leaf node,
(16)

If the size of the tree Tr ar = n, with n being the number of

nodes, and then ar\v = n− av .

In summary, the tree bipartitioning algorithm is outlined in

Algorithm 1.

Algorithm 1 Tree bipartitioning

1. Calculate recursively association (size) av for each subtree Tv

according to Equation (15) or Equation (16), and association
(size) ar/v of subtree Tr/v.

2. Traverse all the edges to find the optimal bipartition.

B. K-Way Partitioning

We study the problem of segmenting images into more

partitions with a focus on k-way partitioning as k can be easily

set, while other parameters, such as the ideal regularized cut

value, are not intuitively and easily set as it might depend on

specific images; and fixing k can help know the complexity

of the segmentation results and help some applications, e.g.,

image compression. To be convenient, we use normalized tree

partitioning as an example for the discussion. Suppose the k

partitions are denoted by V1, · · · ,Vk and the tree is denoted

by V , the objective function can be written as follows,

NC =

k∑

i=1

Cut(Vi,V − Vi)

Assoc(Vi,V)
. (17)

Unlike the case k = 2 in which we have a linear algorithm

to get the optimal solution, it is difficult to find the global

optimum. A naive algorithm may check all possible k-way

partitions separately in a brute force manner, which will lead to

O(nk) time complexity. To our knowledge, there does not exist

an exact k-way partitioning algorithm similar to the above

bipartitioning algorithm.

We propose a best-first recursive bipartitioning algorithm

to approximately compute k-way partitioning. The recursive

procedure is outlined in Algorithm 2. The algorithm starts

from two partitions obtained by splitting the tree using the

above bipartitioning algorithm. Then it finds one from the two

partitions based on some criterion, and splits it into two parts

using the bipartitioning algorithm, resulting three partitions.

Next, our algorithm does the same job over the three partitions.

Our algorithm continues the splitting procedure until getting

k partitions.

We conducted an experiment to compare two approximate

solutions of normalized cuts: our k-way partitioning algo-

rithm and spectral clustering [33]. The comparison of the

normalized cuts values is illustrated in Figure 6 and detailed

in Section VI-A2. This shows that our algorithm achieves a

better approximation though both algorithms cannot get the

global optimum solutions. The time complexity analysis of the

recursive procedure is given in the next section. Illustrative ex-

amples are presented in Figure 5 and detailed in Section V-C.

Algorithm 2 K-way tree partitioning

1. Bisect the input tree T into A1 and A2. Set the number of
current partitions p = 2.

2. Bisect all the current subtrees {Ai}
p
i=1.

3. Find the subtree At that produces the smallest normalized
(average, maximum normalized, maximum average) cut value,
denote its bisected subtrees B1 and B2, and let At = B1 and
Ap+1 = B2, increase p by 1.

4. Output the k-way partitions if p = k, otherwise go to step 2.

C. Time Complexity

In regularized tree partitioning, we evaluate the associations

(sizes), using a recursive way costing O(n) time in that

each node is only involved once to calculate the association

of its parent tree, and the optimal bipartition is found in

O(n) time. For k-way partitioning, the total time complexity

is O(kn). When applying it into general data clustering

problems, we need to build a neighborhood graph for all the

data points, which can be implemented in O(n log n) time

using approximate nearest neighbor algorithms such as [5],

[23] or direct construction [42], or build an image graph by
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TABLE I
COMPARISON OF THE CRITERION AND TIME COMPLEXITY WITH

OTHER METHODS. MTP = MINIMUM TREE PARTITIONING. NTP =
NORMALIZED TREE PARTITIONING. ATP = AVERAGE TREE

PARTITIONING. MAXNTP = MAXIMUM NORMALIZED TREE

PARTITIONING. MAXATP = MAXIMUM AVERAGE TREE

PARTITIONING. SC = SPECTRAL CLUSTERING [33]. GBIS =
GRAPH-BASED IMAGE SEGMENTATION [14]. IGP =

ISOPERIMETRIC GRAPH PARTITIONING [17]. MSNC =
MULTISCALE NORMALIZED CUT [11]. NOTE: THE TIME

COMPLEXITY OF SC IS FOR THE BASIC IMPLEMENTATION IN THE

CASE OF A SPARSE GRAPH, AND THE COMPLEXITY OF MSNC IS

FOR AN IMAGE.

Cut criterion Time complexity

MTP minimum cut O(n(k + logn))
NTP normalized cut O(n(k + logn))
ATP average cut O(n(k + logn))

MaxNTP maximum normalized cut O(n(k + logn))
MaxATP maximum average cut O(n(k + logn))

SC normalized cut O(n2)
GBIS local criretion O(n logn)
IGP isoperimetric cut O(n2)

MSNC multiscale normalized cut O(n)

(a) (b) (c) (d)

Fig. 3. Illustration of normalized tree partitioning on 2D toy examples. The
top row shows the MSTs, and the bottom shows the corresponding clustering
results with the number of clusters prefixed as 3, 3, 3, and 5, where different
colors represent different clusters.

connecting spatially neighboring points, which costs O(n).
The maximum weight spanning tree can be achieved using

Prim’s or Kruskal’s algorithms, which takes O(n log n) time

in our sparse graph case. In summary, for general cases the

time complexity is O(n(k + logn)). The comparison of time

complexity with representative existing graph based methods

is presented in Table I.

V. ILLUSTRATIONS

In this section we use normalized tree partitioning over the

MST as an example for illustration. First, we demonstrate

the effectiveness of NTP on clustering complex data points

and face examples. Then we present an illustration of k-way

partitioning for image segmentation.

A. 2D Toy Example

We first illustrate tree partitioning for clustering perfor-

mance on 2D toy examples, shown in Figure 3. We show the

results of two simple examples shown in (a) and (b) and two

challenging examples shown in (c) and (d), which are used

(a)
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Fig. 4. (a) Sample face images. (b) Comparison with spectral clustering (SC)
and affinity propagation (AP). It can be seen that the performance of NTP is
better than SC and AP.

in [50]1. We construct a data graph by connecting 4 nearest

neighbors. The top row in Figure 3 shows the MST, and the

bottom row shows the clustering results of our approach. This

example shows that our approach has the ability to cluster the

complex data points as shown in Figure 3 (c) and (d).

B. Face Example

We do a clustering experiment on the face dataset2. The

data set contains 900 face images generated from the first

100 face images in the Olivetti database with simple editing.

We build a sparse graph on the images by connecting each

image and its 50 nearest neighbors. We vary the cluster number

between 100 and 300, and compute the error rate against the

ground truth (all the images, which are generated from the

same original image, are considered to have the same label).

The error rate is computed as the average of the error rates

over all the clusters. For each cluster, we record the numbers

of each of the 100 faces, n1, n2, · · · , n100, and the error rate

is computed as e =
n−maxi∈[1,100] ni

n
, where n =

∑100
i=1 ni.

The comparison results with spectral clustering and affinity

propagation [16] are presented in Figure 4. It can be seen

that NTP performs better than other two methods. It is also

worth pointing out that the error rate of NTP monotonically

decreases, while that of spectral clustering oscillates, due to

the instability of its discretization.

C. K-Way Partitioning

We illustrate the recursive bipartition scheme for realizing

k-way partitioning for image segmentation, shown in Figure 5.

The computation procedure of the weights over the edges is

described in the next section. The superpixels are shown in (b),

the graph on the superpixels is shown in (c). The maximum

weight spanning tree approximating this graph is shown in (d).

Next, the optimum bisegmentation by our method is shown

(e), Last, the 3-way and 4-way partitions using the recursive

scheme are shown in (f) and (g).

VI. EXPERIMENTS

We apply regularized tree partitioning approaches to image

segmentation and present qualitative and quantitative compar-

isons on the Berkeley image segmentation data set [25]. The

1http://www.vision.caltech.edu/lihi/Demos/SelfTuningClustering.html
2http://www.psi.toronto.edu/affinitypropagation/Faces.JPG
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(a) Image (b) Superpixels (c) Graph (d) Tree (e) Bipartition (f) 3-way partition (g) 4-way partition

Fig. 5. Illustration of recursive bipartition for k-way partitioning.

data set contains 200 training images and 100 test images

with size of 481×321 or 321×481. Here we do unsupervised

segmentation, and perform segmentation on all the 300 images.

The results based on tree partitioning are all obtained by

segmenting the superpixels, which are generated by fragment-

ing the image using the watershed algorithm [38]. The graph

is constructed by setting the superpixels as the nodes and

connecting two superpixels iff they are spatial neighbors. The

distance (d) between neighboring superpixels is evaluated as

the χ2 distance of the color histograms of two regions. An

exponential function, exp (− d2

2σ2 ) with σ being the average of

the distances in one image, is used to compute the weight.

By comparison, we also present the segmentation re-

sults of other widely-used grouping algorithms, including

multi-class spectral clustering (SC) based on the normalized

cut criterion [33], heuristic graph based image segmenta-

tion (GBIS) [14], isoperimetric graph partitioning for image

segmentation (IGP) [17], mean shift image segmentation

(MS) [9], multiscale normalized cut (MSNC) [11], and simple

linear iterative clustering (SLIC) [1]. In addition, we also

report the result of GPB-UCM [4], the state-of-the-art among

contour based image segmentation approaches. For fairness,

we perform the segmentation algorithms, SC and IGP, on

the graph constructed from superpixels. We modify the im-

plementation of spectral clustering3 and isoperimetric graph

partitioning4 so that they are able to group superpixels, and

get the results of SC and IGP. We run the implementation of

multiscale normalized cut5 to get the results for MSNC. We

run the implementations of GBIS6, mean shift7, SLIC8, and

GPB-UCM9. The segment numbers of tree partitioning, spec-

tral clustering are set to be the same. For GBIS, mean shift,

and isoperimetric graph partitioning, we tune the parameters

so that they have similar segment numbers on average.

3http://www.cis.upenn.edu/∼jshi/software/
4http://www.cns.bu.edu/∼lgrady/grady2006isoperimetric code.zip
5http://www.seas.upenn.edu/∼timothee/software/ncut multiscale/ncut

multiscale.html
6http://people.cs.uchicago.edu/∼pff/segment/
7http://coewww.rutgers.edu/riul/research/code/EDISON/index.html
8http://ivrg.epfl.ch/supplementary material/RK SLICSuperpixels/
9http://vision.caltech.edu/∼mmaire/software/grouping.zip

A. Quantitative Comparison

The quantitative comparison is based on four criteria against

the human annotations: probabilistic rand index (PRI) [35],

variation of information (VoI) [26], global consistency error

(GCE) [25], and boundary displacement error (BDE) [15]. The

PRI score counts the number of pairs of pixels whose labels are

consistent between the segmentation and the ground truth. The

score is averaged over multiple ground truth segmentations to

take scale variation into consideration in human perception.

The VoI score defines the distance between two segmenta-

tions as the average conditional entropy of one segmentation

given the other, and thus roughly measures the amount of

randomness in one segmentation that cannot be explained by

the other. The GCE score measures the extent to which one

segmentation can be viewed as a refinement of the other.

Segmentations which are related in this manner are considered

to be consistent, because they could represent the same natural

image segmented at different scales. The BDE score measures

the average displacement error of boundary pixels between

two segmented images.

The segmentation is viewed better if PRI is larger or the

other three are smaller. It is reported in [47] that PRI is more

correlated with human hand segmentations. It also should be

pointed out that GCE favors over-segmentation and under-

segmentation [31], which results in that the highest score is

achieved when each pixel forms a segment or all pixels form

a single segment.

1) Maximum and Random Spanning Trees: We conduct the

image segmentation over the maximum spanning tree (MST)

of the original graph using the proposed tree partitioning

approaches. Here we provide empirical evidences to show that

MST is a better choice than random spanning tree (RST). We

present the performance comparison based on the MST and

RST. The quantitative comparison is provided in Table II. We

randomly generate 10 RSTs and report the average perfor-

mance over them. As we can see, the performances over MST

consistently outperform those over RST in terms of all the

four criteria.

2) Normalized Tree Partitioning and Spectral Clustering:

We conduct an experiment to show the superiority of nor-
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TABLE II
QUANTITATIVE COMPARISON OF DIFFERENT MST AND RST. THE BEST SCORES ARE HIGHLIGHTED IN BOLD FONTS. NTP = NORMALIZED TREE

PARTITIONING OVER THE MST. ATP = AVERAGE TREE PARTITIONING OVER THE MST. MAXNTP = MAXIMUM NORMALIZED TREE PARTITIONING OVER

THE MST. MAXATP = MAXIMUM AVERAGE TREE PARTITIONING OVER THE MST. RSTNTP = NTP ON THE RST. RSTATP = ATP ON THE RST.
RSTMAXNTP = MAXNTP ON THE RST. RSTMAXATP = MAXATP ON THE RST.

NTP ATP MaxNTP MaxATP RSTNTP RSTATP RSTMaxNTP RSTMaxATP

PRI 0.7984 0.8039 0.7963 0.8020 0.7806 0.7869 0.7794 0.7853
VoI 2.113 2.021 2.142 2.048 2.357 2.270 2.388 2.295

GCE 0.2171 0.2066 0.2194 0.2039 0.2621 0.2400 0.2667 0.2425
BDE 13.58 13.77 13.85 13.65 15.28 14.46 15.41 14.52
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Fig. 6. Comparison of k-way normalized cut values of spectral clustering
and normalized tree partitioning. Each point is formed by the normalized cut
values computed from spectral clustering and normalized tree partitioning for
each image in the Berkeley image data set. It can be seen that normalized
tree partitioning performs better.

malized tree partitioning over spectral clustering in terms of

the k-way normalized cut value. The value is computed by∑k

i=1
Cut(Vi,V−Vi)

Assoc(Vi)
. Here V is the whole set of superpixels,

Vi corresponds to each partition. For each image, we consider

all the numbers of segmentation that are provided in the

ground-truth. The illustration is shown in Figure 6, where

each point corresponds to the normalized cut values computed

from spectral clustering and normalized tree partitioning for

one image. We can see that most points lie in the bottom-left

area, which indicates that for most images normalized tree

partitioning gets smaller normalized cut values than spectral

clustering. Specifically, there are 246 out of 300 (around 82%)

images whose normalized cut values of our approach are

smaller than spectral clustering. As a result, normalized tree

partitioning get better solutions than spectral clustering.

3) Comparison with State-of-the-Art Approaches: The

comparisons with state-of-the-art approaches are shown in Ta-

ble III. We first discuss the results from grouping algorithms.

SLIC gets the worst performance, which is reasonable as it is

an approach to image oversegmentation. In terms of PRI, GCE

and BDE, the proposed four tree partitioning approaches per-

form better than Spectral clustering (SC), isoperimetric graph

partitioning (IGP), and multiscale normalized cut (MSNC).

In terms of PRI, VoI, and BDE, NTP, ATP and MaxNTP

outperform GBIS. In terms of PRI and VDE, NTP and

MaxATP is better than MS. In terms of PRI and VoI, ATP

is better than MS.

The superiority over SC, IGP, and MSNC is because our

method can obtain a better solution by introducing the tree

structure, while spectral relaxation adopted in SC, IGP, and

MSNC suffers from the two approximation steps, relaxing

the discrete values to continuous values and discretizing the

continuous solutions to the discrete ones. The superiority

over GBIS comes from the regularization considering both

inter-similarities and self-similarities (NTP) or self-size (ATP)

of clusters, while GBIS only utilizes the local similarity

criterion and has no ability to measure the self-similarity of a

cluster. The superiority over MS comes from the same reason.

Experience shows that PRI seems to be more correlated with

human segmentation in term of visual perception.

The running time of all the methods is reported in the last

but one row of Table III. We can see that the running time

(RT in seconds) of tree partitioning approaches is much less

than SC, MS, IGP, and MSNC. It should be noted that the

running time for tree partitioning is recorded for the whole

segmentation process including both preprocessing, graph con-

struction, MST computing and tree partitioning. SC, IGP, and

MSNC contain a time-consuming eigenvalue decomposition

step and MS is an iterative algorithm that essentially contains

time-consuming matrix-vector multiplication operations. GBIS

costs less time than tree partitioning approaches. It is reason-

able because GBIS performs a greedy algorithm while tree

partitioning approaches need to compute optimal solutions.

The memory cost of all the approaches for segmenting

an image is reported in the last row of Table III. One can

see that MSNC and GPB-UCM take the largest memory cost

and others take small cost. GBIS and SLIC require the least

memory because they only use the color feature (e.g., RGB

or LUV) to represent the pixels. MS uses a sparse similarity

matrix over pixels and it is an iterative algorithm, thus taking

a little more memory cost. Other methods, MTP, NTP, ATP,

MaxNTP, MaxATP, SC, IGP, need to store the regional features

(i.e., color histogram) and hence take a little more memory

cost, though the tree and graph structures over superpixels

use very small cost. MSNC computes the normalized cut si-

multaneously across multiple scales and therefore needs more

memory. GPB-UCM consumes the most memory because the

local features in several channels used are large and the affinity

matrix is also large.

We report the segmentation results from GPB-UCM [4],

the best contour based segmentation approach. As shown

in Table III, except VoI, our approach gets the similar (slightly

worse) performance over other three criteria compared with

GPB-UCM. This is understandable because our approach is a

general clustering algorithm and GPB-UCM is specially de-

signed for image segmentation. The comparable performance
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(a) (b) (c)
Fig. 8. Failure examples. (a) input image, (b) segmentation results of ATP,
and (c) ground truth annotation.

obtained from our approach shows the power of our approach.

Notably, our approach is much more efficient than GPB-UCM

and around 170 times faster than GPB-UCM. Considering

both segmentation quality and efficiency, our approach is quite

competitive.

B. Qualitative Comparison

The qualitative results from clustering algorithms, including

minimum tree partitioning, average tree partitioning and maxi-

mum average tree partitioning, spectral clustering, graph based

image segmentation, mean shift, isoperimetric graph partition-

ing, and multiscale normalized cut are shown in Figure 7.

Here, we do not show the results from (maximum) normalized

tree partitioning as they are similar to and only a little worse

than those of (Max)ATP.

In the challenging image in the second row of Figure 7

(a), the color of the leopard is very close to the background.

In addition, the repeated patterns on the leopard’s body also

make the segmentation algorithm difficult to cut out its whole

body. For this case ATP successfully cuts out the leopard while

SC and MSNC both fail. Another example is the fourth row

of Figure 7 (a), SC, GBIS, MS, IGP, and MSNC cannot cut

out the body of the dog, while MaxATP can distinguish the

dog from the background. This superiority of MaxATP comes

from the tree structure in which the more accurate solution

can be found. In the last but one row of Figure 7, the color

of the wolf’s body is very close to the background. GBIS and

MS all fail to cut out the wolf. GBIS only cuts out the eye

and nose of the wolf and MS only cuts out small regions on

its body. ATP and MaxATP, however, which take the size of a

cluster into consideration, successfully cut out the whole body

of the wolf.

There are some cases in which regularized tree partitioning

fails to achieve satisfactory segmentation results. Some failure

results of the ATP approach are shown in Figure 8. The images

are highly textured (e.g., the glass in the second row). It is

difficult to generate appealing segmentation results to consider

only the color information. By combining other cues, such as

edge, texture, our approaches have potentials to get even better

results in the failure cases.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose regularized tree partitioning ap-

proaches and show the powerfulness in the application to im-

age segmentation. We have presented normalized and average

tree partitioning and two extensions, analyzed the property that

results in an efficient algorithm. Moreover, we also have given

the necessary condition on which our approaches over the

MST can get the exact partition over the graph. Furthermore,

we have derived our approaches from novel graph partitioning

criteria and given the sufficient and necessary condition on

which our approaches get the optimal bipartition. Experimental

results of image segmentation over the Berkeley image data

set demonstrate the effectiveness of the proposed approaches.

Discussions and future work. (1) The theoretical analysis

presented in this paper is based on the assumptions: the

maximum weight spanning tree is unique and there is only

one edge in this tree corresponding to the smallest weight.

Our experiments show that two assumptions often hold in the

real-world images. But the analysis remains unclear if the two

assumptions do not hold. It is worth investigating the theory

without the two assumptions. (2) We present an approximate

solution to k-way partitioning. As future works, we will study

how the solution approximates the exact k-way partitioning

and if there is any scheme automatically determining k.
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APPENDIX

A. Proof for Theorem 1

Proof. Suppose that A∗ and B∗ correspond to the

optimal solution of Equation (4). Let (u∗, v∗) =
argmaxu∈A∗,v∈B∗ w(u, v).

First, edge (u∗, v∗) must appear in the MST T . Otherwise,

we can build a tree T̃ with a larger weight than the weight of

T in the below process. Here the weight of a tree is defined as

the summation of the weights over all the edges in the tree. If

adding (u∗, v∗) to the tree T , it is obvious that there exists a

loop that includes two edges across A∗ and B∗, with one being

(u∗, v∗) and another edge e. By the definition, w(u∗, v∗) >

w(e), where w(e) is the weight over edge e. Then we can

remove edge e to break the loop to get another tree T̃ whose

weight is larger than that of T .

Second, there exists only a single edge in the MST that

is across the two subsets, A∗ and B∗. Otherwise, we can

cut another edge in the MST to get a partition in the below

process so that the objective value is smaller. Suppose there

is another edge e in the MST across A∗ and B∗. By the

definition, w(u∗, v∗) > w(e). Then, we can cut edge e in

the MST to get two subsets Ã∗ and B̃∗, and in this case,

w(e) = max
u∈Ã∗,v∈B̃∗ w(u, v) because e lies in the MST.

Thus, max
u∈Ã∗,v∈B̃∗ w(u, v) < maxu∈A∗,v∈B∗ w(u, v).

Finally, edge (u∗, v∗) has the smallest weight in the

MST. Otherwise, we can find another partitioning with a

smaller dominant cut. Suppose in the MST weight w(e)
over edge e is smaller than w(u∗, v∗) and cutting edge

e leads to two subsets Ã∗ and B̃∗. According to the
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TABLE III
QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART METHODS. THE BEST SCORES ARE EMPHASIZED IN BOLD FONTS. MTP = MINIMUM TREE

PARTITIONING. NTP = NORMALIZED TREE PARTITIONING. ATP = AVERAGE TREE PARTITIONING. MAXATP = MAXIMUM AVERAGE TREE PARTITIONING.
SC = SPECTRAL CLUSTERING [33]. IGP = ISOPERIMETRIC GRAPH PARTITIONING [17]. GBIS = GRAPH-BASED IMAGE SEGMENTATION [14]. MS =

MEAN SHIFT [9]. MSNC = MULTISCALE NORMALIZED CUT [11]. SLIC = SIMPLE LINEAR ITERATIVE CLUSTERING [1]. GPB-UCM = CONTOUR BASED

SEGEMENTATION [4].

Grouping Contour
MTP NTP ATP MaxNTP MaxATP SC IGP GBIS MSNC MS SLIC GPB-UCM

PRI 0.7442 0.7984 0.8039 0.7963 0.8020 0.7911 0.7896 0.7753 0.7614 0.7853 0.7287 0.8183
VoI 1.840 2.113 2.021 2.142 2.048 2.056 1.992 2.448 2.665 2.033 2.935 1.547

GCE 0.1953 0.2171 0.2066 0.2194 0.2039 0.2510 0.2343 0.2037 0.2610 0.1817 0.2738 0.1911

BDE 19.88 13.58 13.77 13.85 13.65 14.01 13.85 14.49 14.01 13.71 18.93 13.04

RT 1.219 1.252 1.230 1.246 1.227 3.460 21.74 0.6551 58.73 121.0 0.5223 207.6
Memory (MB) 6 6 6 6 6 7 6 1 181 6 1 707

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)
Fig. 7. Visual comparisons of image segmentation on the Berkeley dataset. (a) the original image, (b) minimum tree partitioning, (c) average tree partitioning,
(d) maximum average tree partitioning, (e) spectral clustering [33], (f) graph based image segmentation [14], (g) mean shift [9], (h) isoperimetric graph
partitioning [17], (i) multiscale normalized cut [11], (j) GPB-UCM [4], and (k) simple linear iterative clustering (SLIC) [1].

definition of MST, w(e) = max
u∈Ã∗,v∈B̃∗ w(u, v). Thus,

max
u∈Ã∗,v∈B̃∗ w(u, v) < maxu∈A∗,v∈B∗ w(u, v). This is in

contradiction with that A∗ and B∗ is the optimal solution

of Equation (4)

Consequently, the statement holds.

B. Proof for Theorem 2

Proof. The theorem could be proved by contradiction. If in the

optimal partition more than one edges, e.g., {e1, · · · , ek}, are

cut, the dominant cut would correspond to the edge with the

greatest weight, which is assumed to be edge e1 without loss of

generality. Consider a new partition that is formed by cutting

one edge among {e2, · · · , ek}. It can be easily validated that

the dominant cut over such a new partition is smaller than

that in the optimal partition. This is in contradiction with the

definition of the optimal partition.

The theorem regarding to the minimum cut criterion can be

proved in a similar way.

C. Proof for Theorem 3

Proof. We prove this theorem by contradiction. Suppose there

exists an optimum, where m (> 1) edges, {(ui, vi)}mi=1,

ui ∈ A, vi ∈ B, are removed, and this leads to m + 1 con-

nected subtrees {Vj}mj=0. Denote βVj
= Assoc(Vj ,V). Thus,

Assoc(A,V) =
∑

Vj⊂A βVj
, Assoc(B,V) =

∑
Vj⊂B βVj

.

Then the normalized cut value is written as

NCut =

∑m

i=1 w(ui, vi)∑
Vj⊂A βVj

+

∑m

i=1 w(ui, vi)∑
Vj⊂B βVj

=
wT

∑m

i=1 w(ui, vi)

(
∑

Vj⊂A βVj
)(
∑

Vj⊂B βVj
)
, (18)

where wT ≡
∑

Vj⊂A βVj
+
∑

Vj⊂B βVj
≡ Assoc(A∪B,A∪

B) ≡ Assoc(V ,V) by definition.

Let’s consider the m partitions, {(Ai,Bi)}mi=1, where each

partition (Ai,Bi) is formed by splitting a single edge (ui, vi)
in the original tree. The normalized cut value of a partition
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(Ai,Bi) is written as

NCuti =
w(ui, vi)∑
Vj⊂Ai

βVj

+
w(ui, vi)∑
Vj⊂Bi

βVj

=
wT w(ui, vi)

(
∑

Vj⊂Ai
βVj

)(
∑

Vj⊂Bi
βVj

)
, (19)

where wT is the same as the definition in Eqn. (18).

Subtrees {Vj}mj=0 and edges {(ui, vi)}mi=1 can be viewed as

a super tree T̂ with subtrees as super nodes connected by edges

{(ui, vi)}mi=1, which is shown in Figure 1. Then the following

two statements hold: (1) A and B correspond to the subsets

of super nodes with odd depths (blue nodes in Figure 1) and

even depths (red nodes in Figure 1), respectively; (2) (Ai,Bi)
can be viewed as a partition of the super tree T̂ by removing

edge (ui, vi).

From the above two statements, the following inequality

holds,

∑m

i=1
(
∑

Vj⊂Ai

βVj
)(

∑

Vj⊂Bi

βVj
) > (

∑

Vj⊂A

βVj
)(

∑

Vj⊂B

βVj
).

(20)

This inequality can be justified because (1) the expansion of

the right hand leads to the summation of all βVo
and βVe

with

Vo and Ve being the super nodes of an odd depth and an even

depth, and (2) any βVo
or βVe

must appear in the expansion

of the left hand.

Then, we have the following inequality, by denoting

NCuti =
NCuti
wT

.

min{NCuti}
m
i=1 (21)

6

∑m

i=1 w(ui, vi)∑m

i=1(
∑

Vj⊂Ai
βVj

)(
∑

Vj⊂Bi
βVj

)
(22)

<

∑m

i=1 w(ui, vi)

(
∑

Vj⊂A βVj
)(
∑

Vj⊂B βVj
)
. (23)

The inequality from Equation (21) to Equation (22) can be

easily justified by the generalization of the fact: If a1

b1
6

a2

b2

with a1, b1, a2, and b2 being positive, a1

b1
6

a1+a2

b1+b2
holds. The

whole inequality means that at least one partition (Ai,Bi) has

a smaller normalized cut value than (A,B), and this is in

contradiction with the assumption.

Consequently, the theorem holds.

D. Proof for Theorem 4

Proof. First, it can be shown that the light edge (u∗, v∗) =
argmaxu∈A∗,v∈B∗ w(u, v) must be contained in the MST

according to the definition of MST. Second, NTP gets the

partition (A∗,B∗) and Theorem 3 indicates that NTP cuts only

one edge in the tree. Third, if there is another edge e across

(A∗,B∗) contained in the MST, this means that cutting only

one edge across (A∗,B∗) cannot lead to the partition (A∗,B∗).
Hence, only the light edge across (A∗,B∗) is contained in the

MST.

Consequently, the theorem holds.

E. Proof for Theorem 5

Proof. We use S1 to denote the statement that the solution

to minimizing normalized cut over the MST also results in

A∗ and B∗, and S2 to denote the statement among the edges

across (A∗,B∗), only the light edge is contained in the MST.

Using the proof of Theorem 4, we can justify S1 → S2.

S2 → S1 can be justified by contradiction. On the one

hand, if S2 holds, then we can split one edge in the MST

to produce the partition (A∗,B∗). On the other hand, assume

that the solution to minimizing NCut over the MST leads to

another partition Ã∗ and B̃∗, which leads to a smaller NCut
value. It can be shown that DCut(Ã*, B̃*) over the graph is

the weight over the edge in the MST that is cut to form the

partition (Ã∗, B̃∗). Then, the partition (Ã∗, B̃∗) produces a

smaller NDCut value over the graph. This is in contradiction

with that A∗ and B∗ correspond to the optimal partition over

the graph.

Consequently, the theorem holds.

F. Proof for Theorem 6

Proof. It has be shown before that ratio cut is equivalent to

average cut. Hence, we consider this theorem only in terms of

ratio cut (RCut), and prove it by contradiction.

Suppose there exists an optimum, where m (> 1) edges,

{(ui, vi)}mi=1, ui ∈ A, vi ∈ B, are removed, and this leads to

m + 1 connected subtrees {Vj}mj=0. Then the ratio cut value

can be written as

RCut =

∑m

i=1 w(ui, vi)

|A||B|
. (24)

Consider the m possible partitions, {(Ai,Bi)}mi=1, correspond-

ing to splitting one single edge from {(ui, vi)}mi=1. The ratio

cut value of (Ai,Bi) is written as

RCuti =
w(ui, vi)

|Ai||Bi|
. (25)

The following inequality holds

min{RCuti}
m
i=1 (26)

6

∑m

i=1 w(ui, vi)∑
i |Ai||Bi|

(27)

<

∑m

i=1 w(ui, vi)

|A||B|
. (28)

The inequality from Equation (26) to Equation (27) can

easily be validated. The inequality from Equation (27) to

Equation (28) can be proved similarly from Equation (22) to

Equation (23).

Consequently, the theorem holds.
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